Tuesday, September 22	Name	SOLUTIONS	
	Email	6.818-www@mit.edu	
6.818 Fall 2020	Miniauiz #9		5 Minutes

- 1. Consider the extension to IMP that we saw last lecture, which adds heaps to the language.
 - a) Suppose we would like to define a new type of statement x *= e, which evaluates the expression e and stores its result to the heap at the address that variable x maps to. Write the inference rule for the statement x *= e:

$$\frac{(\sigma, h, e) \to n \qquad \sigma(x) = a \qquad h[a:n] = h'}{(\sigma, h, x *= e) \to (\sigma, h')}$$

b) Now suppose the language also supports a new type of statement x <= y, whose semantics is defined by the following inference rule:

$$\frac{\sigma(y) = a \qquad \sigma[x : a] = \sigma'}{(\sigma, h, x \le y) \to (\sigma', h)}$$

Assuming an initial frame $\sigma = \{x : 100\}$ and an initial heap $h = \{100 : 1\}$, what is a possible set of frame and heap after the following program is executed?

$$\sigma' = \{x : 100, y : 100, z : 200\}$$
$$h' = \{100 : 5, 200 : 25\}$$