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Phase 4: Virtual Machine
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Deliverables

« Your VM compiler and interpreter
« Must conform to language specification from Phase 2

* Must be able to build your code by running ./build. sh

* VM compiler must be invoked by . /run.sh compile

<input>.mit -o <output>.mitbc and take MITScript source
code as input

* VM interpreter binary should be invoked by . /run.sh vm
<input>.mitbc



Deliverables

 Ten test cases

« Documentation (should also describe how work was divided up)
« Bytecode tests

« End-to-end tests

e Memlimit tests



Due Dates

o Checkpoint #1: October 24 @ 10 pm

« Autograder score on bytecode tests (public and private) will
determine extra credit (up to 5%)

o Checkpoint #2: October 31 @ 10 pm

« Autograder score on both bytecode and e2e tests will determine
extra credit (up to 5%)

 Final due date: November 7 @ 10 pm

 In addition to bytecode and e2e tests, we will run your submission
on memlimit tests



Tips
e Don’t optimize prematurely!

 Always profile and justify optimizations (covered more in R9)

e Be a good friend and teammate
« Use branches and PRs internally
« Write good code and comment well
« Communicate and be accountable

Make sure you start as soon as possible (this phase is very long)!



From AST to Bytecode
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Common mistakes x -

« Improperly indexing into locals, globals, or
other arrays

o Directly using a constant instead of indexing
e Incorrect pushing and handling of references
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