
Phase 4 Overview

6.1120
Fall 2025

Phase 4: Virtual Machine

function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

f = fun(y) {
 x = y + 2;
};
f(1);

Deliverables
• Your VM compiler and interpreter
• Must conform to language specification from Phase 2
• Must be able to build your code by running ./build.sh

• VM compiler must be invoked by ./run.sh compile
<input>.mit -o <output>.mitbc and take MITScript source
code as input

• VM interpreter binary should be invoked by ./run.sh vm
<input>.mitbc

3

Deliverables
• Ten test cases
• Documentation (should also describe how work was divided up)
• Bytecode tests
• End-to-end tests
• Memlimit tests

4

Due Dates
• Checkpoint #1: October 24 @ 10 pm
• Autograder score on bytecode tests (public and private) will

determine extra credit (up to 5%)
• Checkpoint #2: October 31 @ 10 pm
• Autograder score on both bytecode and e2e tests will determine

extra credit (up to 5%)
• Final due date: November 7 @ 10 pm
• In addition to bytecode and e2e tests, we will run your submission

on memlimit tests

5

Tips
• Don’t optimize prematurely!
• Always profile and justify optimizations (covered more in R9)

• Be a good friend and teammate
• Use branches and PRs internally
• Write good code and comment well
• Communicate and be accountable

Make sure you start as soon as possible (this phase is very long)!

6

From AST to Bytecode

function {
 functions = [],
 constants = [
 None, true, false, "OK", 1, 0
],
 names = [print, input, intcast,
x],
 instructions = [
 load_global 1
 call 0
 load_const 3
 eq
 not
 if 4
 load_const 4
 store_global 3
 goto 3
 load_const 5
 store_global 3
 load_const 0
 return
]
}

if (input() == “OK”) {
 x = 1;
} else {
 x = 0;
}

If

BinExpr

Call
input

Const
“OK”

Block

Assign

Var
x

Const
0

Block

Assign

Var
x

Const
1

t1 = input()
t1 == “OK”

x = 1 x = 0

return

Common mistakes

• Improperly indexing into locals, globals, or
other arrays
• Directly using a constant instead of indexing
• Incorrect pushing and handling of references

function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

f = fun(y) {
 x = y + 2;
};
f(1);

I present to you… instructions.h!

MITScript VM

Op Stack
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

Heap

Stack
Frame

Globals

f
Locals

f = fun(y) {
 x = y + 2;
};
f(1);

MITScript VM

Op Stack
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

1

Heap

Stack
Frame

Globals

f
Locals

f = fun(y) {
 x = y + 2;
};
f(1);

MITScript VM

Op Stack
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

2

Heap

Stack
Frame

Globals

f
Locals

f = fun(y) {
 x = y + 2;
};
f(1);

MITScript VM

Op Stack Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

3

Heap

Stack
Frame

Closure { f : , ctx : []}

Globals

f

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Op Stack Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

4

Heap

Stack
Frame

Closure { f : , ctx : []}

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Op Stack Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

5

Heap

Stack
Frame

Closure { f : , ctx : []}

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Op Stack

1

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

6

Heap

Stack
Frame

Closure { f : , ctx : []}

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

7

Heap

Stack
Frame

Closure { f : , ctx : []}

Op Stack Locals

y : 1
x : None

IP

0

Stack
Frame

Op Stack

1

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

7

Heap

Stack
Frame

Closure { f : , ctx : []}

Op Stack

1

Locals

y : 1
x : None

IP

1

Stack
Frame

Op Stack

1

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

7

Heap

Stack
Frame

Closure { f : , ctx : []}

Op Stack

1
2

Locals

y : 1
x : None

IP

2

Stack
Frame

Op Stack

1

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

7

Heap

Stack
Frame

Closure { f : , ctx : []}

Op Stack

3

Locals

y : 1
x : None

IP

3

Stack
Frame

Op Stack

1

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

7

Heap

Stack
Frame

Closure { f : , ctx : []}

Op Stack Locals

y : 1
x : 3

IP

4

Stack
Frame

Op Stack

1

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

7

Heap

Stack
Frame

Closure { f : , ctx : []}

Op Stack

None

Locals

y : 1
x : 3

IP

5

Stack
Frame

Op Stack

1

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Op Stack

None

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

7

Heap

Stack
Frame

Closure { f : , ctx : []}

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Op Stack Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

11

Heap

Stack
Frame

Closure { f : , ctx : []}

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Op Stack

None

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

12

Heap

Stack
Frame

Closure { f : , ctx : []}

f = fun(y) {
 x = y + 2;
};
f(1);

Globals

f

MITScript VM

Op Stack

None

Locals
function {
 functions = [],
 constants = [None, 0,
1],
 names = [f],
 instructions = [
 load_func 0
 alloc_closure 0
 store_global 0
 load_global 0
 load_const 2
 call 1
 pop
 load_const 0
 return
]}

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 add
 store_local 1
 load_const 0
 return
]
}

IP

12

Heap

Stack
Frame

Closure { f : , ctx : []}

f = fun(y) {
 x = y + 2;
};
f(1);

