Phase 4 Overview

6.1120
Fall 2025

Phase 4: Virtual Machine

function {

f = fun(y) {

X=

4

£(1);

y + 2;

function {

local vars = [y, X1,

constants = [None,
21,

instructions = |

load local O
load const 1
add

store local 1
load const O
return

functions = P],

constants = [None,
11,

names = [f],

instructions = |

load func
alloc closure
store global
load global
load const
call 1

pop

load const 0
return

1}

N O O O O

0,

Deliverables

« Your VM compiler and interpreter
« Must conform to language specification from Phase 2

* Must be able to build your code by running ./build. sh

* VM compiler must be invoked by . /run.sh compile

<input>.mit -o <output>.mitbc and take MITScript source
code as input

* VM interpreter binary should be invoked by . /run.sh vm
<input>.mitbc

Deliverables

 Ten test cases

« Documentation (should also describe how work was divided up)
« Bytecode tests

« End-to-end tests

e Memlimit tests

Due Dates

o Checkpoint #1: October 24 @ 10 pm

« Autograder score on bytecode tests (public and private) will
determine extra credit (up to 5%)

o Checkpoint #2: October 31 @ 10 pm

« Autograder score on both bytecode and e2e tests will determine
extra credit (up to 5%)

 Final due date: November 7 @ 10 pm

 In addition to bytecode and e2e tests, we will run your submission
on memlimit tests

Tips
e Don’t optimize prematurely!

 Always profile and justify optimizations (covered more in R9)

e Be a good friend and teammate
« Use branches and PRs internally
« Write good code and comment well
« Communicate and be accountable

Make sure you start as soon as possible (this phase is very long)!

From AST to Bytecode

if (input() == “OK") {
x = 1;

} else {
x = 0;

}

7

tl
tl

input ()

—— 11 OKII

BinExpr Block
/ | \\ Block
Call Const Assign
input “OK” |
/ \
Assign Var Const
| . -
\
Var Const
X 1

return

~

function {
functions = [],
constants = [

None, true, false,

1.

n OK n ,

1, 0

names = [print, input, intcast,

X1,

instructions =
load global
call
load const
eq
not
if
load const
store global
goto
load const
store global
load const
return

[
1
0
3

O WUl W W b b

Common mistakes x -

« Improperly indexing into locals, globals, or
other arrays

o Directly using a constant instead of indexing
e Incorrect pushing and handling of references

function {

local vars = [y, X],

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

]
}

function {
functions
constants
1],
names = [f],
instructions = |
load func 0
alloc_closure 0
store global 0
load global 0
load const 2
call 1
pop
load_const 0
return

1}

®1,

[None, O,

| present to you... instructions.h!

ration {

MITScript VM

1P| OpStack | Locals

Stack
Frame

Heap

f = fun(y) {
X =y + 2;
}i
£(1);
function {
m functions = # 1,
f constants = [None, O,
11,
names = [f],
function { instructions = [
local vars = [y, load_func 0
constants = [None, alloc_closure 0
2], store global 0
instructions = | load_global 0
load local O load const 2
load const 1 call 1
add pop
store local 1 load_const 0
load const 0 return
return 1}
]
}

MITScript VM

1P| OpStack | Locals

1

Stack
Frame

Heap

£ = fun(y) {
X =y + 2;
}i
£(1);
function {
m functions = # 1,
f constants = [None, O,
11,
names = [f],
function { instructions = [
local _vars = [y, load_func 0
constants = [None, alloc_closure 0
2], store global 0
instructions = | load_global 0
load local O load const 2
load const 1 call 1
add pop
store local 1 load_const 0
load const 0 return
return 1}
]
}

MITScript VM

2

Stack
Frame)

f

function {
functions =
constants
11,
names = [f],

Heap

function {

local vars = |y,

constants = [None,
2],

instructions = |

load local O
load const 1
add

store local 1
load const O
return

instructions
load func

load globa
load const
call 1

pop

load const
return

1}

alloc closure
store global

o,

[None,

=

1

N O O O O

0

0,

MITScript VM

1P| OpStack | Locals

f

function {
functions =
constants
11,
names = [f],

3
Stack
Frame g
Heap »|Closure {f: ¢ ctx:[]}

function {

local vars = |y,

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

instructions
load func

load_globa
load const
call 1

pop

load const
return

1}

alloc _closure
store global

o,

[None,

= [

1

N O O O O

0

0,

MITScript VM

1P| OpStack | Locals

4

_Globals _
1

Stack
Frame

function {
functions =
constants
11,
names = [f],

Heap Closure {f: e ctx: []}

function {

local vars = |y,

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

instructions
load func

load globa
load const
call 1

pop

load const
return

1}

alloc _closure
store global

o,

[None,

= [

1

N O O O O

0

0,

MITScript VM

1P| OpStack | Locals

.

function {
functions =
constants
11,
names = [f],

5
Stack
Frame *
Heap Closure {f: g ctx:[]}

function {

local vars = |y,

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

instructions
load func

load_globa
load const
call 1

pop

load const
return

1}

alloc _closure
store global

o,

[None,

= [

1

N O O O O

0

0,

MITScript VM

1P| Opstack | locals _
6

.

function {
functions =
constants
11,
names = [f],

Stack
Frame 1
Heap Closure {f: g ctx:[]}

function {

local vars = |y,

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

instructions
load func

load_globa
load const
call 1

pop

load const
return

1}

alloc _closure
store global

o,

[None,

= [

1

N O O O O

0

0,

MITScript VM

1P| Opstack | locals _
7

Stack
Frame

.

o———

1

function {
functions =
constants
11,
names = [f],

1P| Opstack | Locals _
0

y:1
Stack X : None
Frame
Heap Closure {f: e ctx:[]}

function {

local vars = |y,

constants =
2],
instructions =
load local O
load const 1
add
store local 1
load const O
return

[None,

[

instructions =
load func
alloc closure
store global
load global
load const
call 1
pop
load const 0
return

1}

o,

[None,

[

N O O O O

0,

MITScript VM

1P| Opstack | locals _
7

Stack
Frame

.

o———

1

function {
functions =
constants
11,
names = [f],

1P| Opstack | Locals _
1

y:1
Stack 1 X : None
Frame
Heap Closure {f: e ctx:[]}

function {

local vars = |y,

constants =
2],
instructions =
load local 0
load const 1
add
store local 1
load const O
return

[None,

[

instructions =
load func
alloc closure
store global
load global
load const
call 1
pop
load const 0
return

1}

o,

[None,

[

N O O O O

0,

MITScript VM

1P| Opstack | locals _
7

Stack
Frame

.

o———

1

function {
functions =
constants
11,
names = [f],

P | OpStack | Locals
p) 1

y:1
Stack 2 X : None
Frame
Heap Closure {f: e ctx:[]}

function {

local vars = |y,

constants =
2],
instructions =
load local 0
load const 1
add
store local 1
load const O
return

[None,

[

instructions =
load func
alloc closure
store global
load global
load const
call 1
pop
load const 0
return

1}

o,

[None,

[

N O O O O

0,

MITScript VM

1P| Opstack | locals _
7

Stack
Frame

.

o———

1

function {
functions =
constants
11,
names = [f],

1P| Opstack | Locals _
3

y:1
Stack 3 X : None
Frame
Heap Closure {f: g ctx:[]}

function {

local vars = |y,

constants =
2],
instructions =
load local 0
load const 1
add
store local 1
load const O
return

[None,

[

instructions =
load func
alloc closure
store global
load global
load const
call 1
pop
load const 0
return

1}

o,

[None,

[

N O O O O

0,

MITScript VM

1P| Opstack | locals _
7

Stack
Frame

.

o———

1

function {
functions =
constants
11,
names = [f],

1P| opstack | Locals
4

y:1
Stack x:3
Frame
Heap Closure {f: g ctx:[]}

function {

local vars = |y,

constants =
2],
instructions =
load local 0
load const 1
add
store local 1
load const O
return

[None,

[

instructions =
load func
alloc closure
store global
load global
load const
call 1
pop
load const 0
return

1}

o,

[None,

[

N O O O O

0,

MITScript VM

1P| Opstack | locals _
7

Stack
Frame

.

o———

1

function {
functions =
constants
11,
names = [f],

1P| Opstack | Locals _
5

y:1
Stack NEME x:3
Frame
Heap Closure {f: e ctx:[]}

function {

local vars = |y,

constants =
21,
instructions =
load local 0
load const 1
add
store local 1
load const O
return

[None,

[

instructions =
load func
alloc closure
store global
load global
load const
call 1
pop
load const 0
return

1}

o,

[None,

[

N O O O O

0,

MITScript VM

1P| OpStack | Locals

.

function {
functions =
constants
11,
names = [f],

7
Stack
Frame None
Heap Closure {f: e ctx:[]}

function {

local vars = |y,

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

instructions
load func

load_globa
load const
call 1

pop

load const
return

1}

alloc _closure
store global

o,

[None,

= [

1

N O O O O

0

0,

MITScript VM

1P| OpStack | Locals

11

.

Stack
Frame

function {
functions =
constants
11,
names = [f],

Heap Closure {f: e ctx:[]}

function {

local vars = |y,

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

instructions
load func

load_globa
load const
call 1

pop

load const
return

1}

alloc _closure
store global

o,

[None,

= [

1

N O O O O

0

0,

MITScript VM

1P| OpStack | Locals

.

function {
functions =
constants
11,
names = [f],

12
Stack
Frame None
Heap Closure {f: g ctx:[]}

function {

local vars = |y,

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

instructions
load func

load globa
load const
call 1

pop

load const
return

1}

alloc _closure
store global

o,

[None,

= [

1

N O O O O

0

0,

MITScript VM

1P| OpStack | Locals

.

function {
functions =
constants
11,
names = [f],

12
Stack
Frame None
Heap Closure {f: g ctx:[]}

function {

local vars = |y,

constants = [None,
21,

instructions = |

load local 0
load const 1
add

store local 1
load const O
return

instructions
load func

load globa
load const
call 1

pop

load const
return

1}

alloc _closure
store global

o,

[None,

= [

1

N O O O O

0

0,

