
Phase 5 Overview

6.1120
Fall 2025

Recitation 8 overview
• Deliverables (deadlines, objectives, etc.)
• Optimization overview

2

Deliverables (Due December 8 @ 11:59 pm ET)
• An optimized version of your VM from Phase 3
• Can implement as many optimizations as you’d like, but must

implement at least one of the following:
• Threaded code + stack caching
• Tagged pointers
• Type specialization
• Function inlining
• Any other optimization that requires dataflow analysis
• Machine code generation
• Shape analysis

• Credit will only be given if at least one of the optimizations above is
implemented (and implementation must be general)

3

Deliverables (Due December 8 @ 11:59 pm ET)
• An optimized version of your VM from Phase 4
• Must support --mem N as before
• Must also support the following additional options:
• --opt all to enable all optimizations
• --opt <optname> to enable optname optimization (if the

optimization affects code generation, such as inlining)
• --emit-code to print out any code that your VM generates
• Will not be used for automated testing, just nice for manual

inspection

4

Deliverables (Due December 8 @ 11:59 pm ET)
• Writeup
• Must clearly identify all optimizations that are implemented and

specify where in code base each optimization is implemented
• Describe each optimization using diagrams and code examples
• Should convincingly argue how each optimization is beneficial,

general, and correct
• Should discuss other optimizations that were considered but not

implemented

5

Milestone (Due November 14 @ 10 pm ET)
• Consists of preliminary writeup
• Should describe what optimizations you plan on implementing (with

justifications for why you believe they will be beneficial)
• Should discuss other optimizations that were considered

6

Extra Credit Checkpoint (Due November 24 @ 10 pm ET)

• Score based on the “base grade” of your compiler at the time of
submission
• Grading based on correctness and derby performance (relative to

baseline)
• Maximum of 5% EC on P5 grade

7

Grading
• 50% based on implementation (checked for correctness)
• 25% based on public benchmarks
• 25% based on hidden tests

• 30% based on derby performance
• 20% based on report
• But will also be used to help grade your implementation

8

P5: Performance Optimization

9
https://grow.acorns.com/reasons-it-can-pay-to-use-cash/

Performance Engineering
• “Premature optimization is the root of all evil”
• Always benchmark!
• Make sure you measure run-times rigorously
• Take minimum for serial execution

• Optimization stages
• High-level design
• Algorithmic improvements
• Memory allocation
• Cache efficiency
• Low-level improvements
• Compiler intrinsics
• Bit hacks
• Branching improvement

10

(Subroutine-)Threaded Code

11

load_local(...);
load_local(...);
add(...);
store_local(...)
;

inst = {LoadLocal, LoadLocal,
 Add, StoreLocal, ...};

for (; inst != end; ++inst) {
 switch (inst->op) {
 case LoadLocal:
 load_local(...); break;
 case StoreLocal:
 store_local(...); break;
 case Add:
 add(...); break;
 }
}

(Direct-)Threaded Code

12

inst = {LoadLocal, LoadLocal,
 Add, StoreLocal, ...};

for (; inst != end; ++inst) {
 switch (inst->op) {
 case LoadLocal:
 load_local(...); break;
 case StoreLocal:
 store_local(...); break;
 case Add:
 add(...); break;
 }
}

inst = {&&load_local,
 &&load_local, &&add,
 &&store_local, ...};

goto **inst++;
load_local:
 // load local var.
 goto **inst++;
store_local:
 // store local var.
 goto **inst++;
add:
 // perform addition
 goto **inst++;

Stack Caching

13

std:stack<Value*> operands;
...
case Neg:
 Value* op = operands.pop();
 Value* neg = new Integer(-(op->getInt()));
 operands.push(neg);

Value* top; std:stack<Value*> rest;
...
case Neg:
 Value* op = top;
 Value* neg = new Integer(-(op->getInt()));
 top = neg;

True
5

6

True

5

6

Tagged Pointers

14

0100010111100001

0100010111100000
1045030

010001011110000

Type Specialization (Cast Elimination)

15

inst = {LoadConst, Neg,...};

for (; inst != end; ++inst) {
 switch (inst->op) {
 case Neg:
 if (operand->type() != Int) {
 throw InvalidCastException();
 }
 ret = new Integer(-(operand->getInt()));
 ...
 }
}

Type Specialization (Cast Elimination)

16

inst = {LoadIntConst, NegFast,...};

for (; inst != end; ++inst) {
 switch (inst->op) {
 case NegFast:
 ret = new Integer(-(operand->getInt()));
 ...
 }
}

Type Specialization (Unboxing)

17

Value* a = new Integer(1);
Value* b = new Integer(2);
int aval = a->getInt();
int bval = b->getInt();
int cval = aval + bval;
Value* c = new
Integer(cval);

int a = 1;
int b = 2;
int cval = a + b;
Value* c = new
Integer(cval);

Function Inlining

18

double = fun(x) {
 return 2 * x;
};

add = fun(x, y) {
 return x + y;
};

while (i < 100) {
 i = double(i);
 i = add(i, 1);
}

while (i < 100)
{
 i = 2 * i;
 i = i + 1;
}

Dataflow Optimizations

19

a = b;
c = a * 2;
d = e;
f = d;
g = f / h;

c = b * 2;
g = e / h;

a = (3 > 2);
if (a) {
 r = r / 2;
} else {
 r = r + 1;
}

r = r / 2;

Copy propagation:

Dead code elimination:

Machine Code Generation

20

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 sub
 store_local 1
 load_const 0
 return
]
}

__execute_0 :
 push %rdi
 call assert_integer
 pop %rax
 shr $3 %rax
 mov $2 %rcx
 sub %rcx %rax
 ret

Machine Code Generation

21

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 sub
 store_local 1
 load_const 0
 return
]
}

__execute_0 :
 push %rdi
 call assert_integer
 pop %rax
 shr $3 %rax
 mov $2 %rcx
 sub %rcx %rax
 ret

Remove tag

Machine Code Generation

22

function {
 local_vars = [y, x],
 constants = [None,
2],
 instructions = [
 load_local 0
 load_const 1
 sub
 store_local 1
 load_const 0
 return
]
}

__execute_0 :
 push %rdi
 call assert_integer
 pop %rax
 shr $3 %rax
 mov $2 %rcx
 sub %rcx %rax
 ret

Remove tag

Perform subtract

Peephole Optimizations

23

a = x / 8; a = a >> 3;

load_const 0
store_local 0
load_local 0

load_const 0

Strength reduction:

Null sequence elimination:

Other Optimizations
• Redesign or replace MITScript VM bytecode
• Add new instructions, replace with register-based IR, etc.

• Replace mark-and-sweep garbage collector
• e.g., copying collector, generational collector, etc.

• Shape analysis of records (to be discussed in lecture)
• Custom data types for storage
• Instead of using STL objects
• Std::string and std::vector
• Look into SwissTables (Google’s optimized hash tables)

24

