Phase 5 Overview

6.1120
Fall 2025

Recitation 8 overview

 Deliverables (deadlines, objectives, etc.)

o Optimization overview

Deliverables (Due December 8 @ 11:59 pm ET)

o An optimized version of your VM from Phase 3

« Can implement as many optimizations as you'd like, but must
implement at least one of the following:

e Threaded code + stack caching

« Tagged pointers

« Type specialization

e Function inlining

o Any other optimization that requires dataflow analysis
e Machine code generation

« Shape analysis

« Credit will only be given if at least one of the optimizations above is
implemented (and implementation must be general)

Deliverables (Due December 8 @ 11:59 pm ET)

o An optimized version of your VM from Phase 4

* Must support ——mem N as before
« Must also support the following additional options:

* ——opt all to enable all optimizations

* ——opt <optname> to enable optname optimization (if the
optimization affects code generation, such as inlining)
e ——emit-code to print out any code that your VM generates

« Will not be used for automated testing, just nice for manual
inspection

Deliverables (Due December 8 @ 11:59 pm ET)

e Writeup

e Must clearly identify all optimizations that are implemented and
specify where in code base each optimization is implemented

« Describe each optimization using diagrams and code examples

« Should convincingly argue how each optimization is beneficial,
general, and correct

« Should discuss other optimizations that were considered but not
implemented

Milestone (Due November 14 @ 10 pm ET)

o Consists of preliminary writeup

 Should describe what optimizations you plan on implementing (with
justifications for why you believe they will be beneficial)

« Should discuss other optimizations that were considered

Extra Credit Checkpoint (Due November 24 @ 10 pm ET)

o Score based on the “base grade” of your compiler at the time of
submission

« Grading based on correctness and derby performance (relative to
baseline)

« Maximum of 5% EC on P5 grade

Grading

e 50% based on implementation (checked for correctness)
e 25% based on public benchmarks
e 25% based on hidden tests

e 30% basecd
e 20% basec

e But wil

on derby performance

on report
also be used to help grade your implementation

P5: Performance Optimization

https://grow.acorns.com/reasons-it-can-pay-to-use-cash/

Performance Engineering

o “Premature optimization is the root of all evil”

« Always benchmark!
« Make sure you measure run-times rigorously

o Take minimum for serial execution

« Optimization stages
« High-level design
o Algorithmic improvements
« Memory allocation
« Cache efficiency
e Low-level improvements
« Compiler intrinsics
e Bit hacks
e Branching improvement

(Subroutine-)Threaded Code

inst = {LoadLocal, LoadLocal,
Add, Storelocal, ...};
for (; inst != end; ++inst) {

switch (inst->op) {
case LoadLocal:

load local(...); break;
case StoreLocal:

store local(...); break;
case Add:

add(...); break;

=)

load local(...);
load local(...);
add(...);

store local(...)

°
4

11

(Direct-)Threaded Code

inst = {LoadLocal, LoadLocal,
Add, Storelocal, ...};
for (; inst != end; ++inst) {

switch (inst->op) {
case LoadLocal:
load local(...); break;
case Storelocal:

store local(...); break;
case Add:
add(...); break;

inst = {&&load 1local,
&&load local, &é&add,
&&store local, ...};

goto **inst++;
load local:
// load local var.
goto **inst++;
store local:
// store local var.
goto **inst++;
add:
// perform addition
goto **inst++;

12

Stack Caching

std:stack<Value*> operands;

5
““ﬁ?GE““' case Neg:
______________ Value* op = operands.pop();
6 Value* neg = new Integer(-(op->getInt()));
operands.push(neqg);
5 Value* top; std:stack<Value*> rest;
case Neg:
“mJIESm“_ Value* op = top;
6 Value* neg = new Integer(-(op->getInt()));

top = neqg;

13

Tagged Pointers

- 1045030

0100010111100000

M) 010001011110000

0100010111100001

14

Type Specialization (Cast Elimination)

inst = {LoadConst, Neg,...};

for (; inst != end; ++inst) ({
switch (inst->op) {
case Neg:
if (operand->type() != Int) {
throw InvalidCastException();

}

ret = new Integer(-(operand->getInt()));

Type Specialization (Cast Elimination)

inst = {LoadIntConst, NegFast,...};

for (; inst != end; ++inst) {
switch (inst->op) {
case NegFast:
ret = new Integer(-(operand->getInt()));

Type Specialization (Unboxing)

Value* a = new Integer(l);
Value* b = new Integer(2);
int aval = a->getInt();
int bval = b->getInt();
int cval = aval + bval;
Value* ¢ = new
Integer(cval);

=)

int a =1

’
int b = 2;
int cval = a + b;
Value* ¢ = new

Integer(cval);

17

Function Inlining

double = fun(x)
return 2 * X;

}i

add = fun(x, V)
return x + y;

}i

while (i < 100)
1 double(1i);
1 add(i, 1);
}

{

{

while

- {

}

1
1

(i < 100)
2 * 1
i+ 1;

18

Dataflow Optimizations

a = b;

c = a * 2;
Copy propagation: d = e;
f = d;

g=£f / h;

a = (3 > 2);
if (a) {

Dead code elimination: r=r / 2;
} else {

r =r + 1;

il
® O
~NO*

[] we

DN

r / 2;

19

Machine Code Generation

function {
local vars = [y, Xx],
constants = [None, __execute 0
2], push %rdi
instructions = | call assert integer
load local 0 pop %rax
load const 1 shr $3 %rax
sub mov S$S2 %rcx
store local 1 sub %rcx %rax
load const 0 ret
return
]
}

Machine Code Generation

function {
local vars = [y, Xx],
constants = [None, __execute 0
2], push %rdi
instructions = | call assert integer
load local 0 pop %rax
load const 1 shr $3 %rax Remove tag
sub mov $2 %rcx
store local 1 sub %rcx %rax
load const 0 ret
return
]
}

21

Machine Code Generation

function {

local vars = [y, Xx],
constants = [None, __execute 0

2], push %rdi
instructions [call assert integer

poOp 3rax

load local 0
1

load const shr $3 %rax Remove tag
sub | mov $2 %rcx | Perform subtract
store local 1 N sub %rcx %rax)

load const 0 ret

return

22

Peephole Optimizations

Strength reduction: a=x/ 8; - a

a >> 3;

load const 0
Null sequence elimination: store local 0 - load const 0
load local 0

23

Other Optimizations

« Redesign or replace MITScript VM bytecode
« Add new instructions, replace with register-based IR, etc.

« Replace mark-and-sweep garbage collector
e e.g., copying collector, generational collector, etc.

« Shape analysis of records (to be discussed in lecture)

« Custom data types for storage
o Instead of using STL objects
o Std::string and std::vector
 Look into SwissTables (Google’s optimized hash tables)

